# Help:Math

This page explains the Math syntax that can be used in order to format mathematical equations or chemical equations. For example:

${{x^{12}+x+5}\over{x^{y/z}}}=2$

## Syntax

The syntax for displaying a formula is:

${equation}$

Where "equation" is replaced by the wanted equation.

## Equation Formatting

Description You type You get
Exponent
$x^2$
$x^2$
Exponent Grouping
$x^{21+y}$
$x^{21+y}$
Subscript
$CO_2$
$CO_2$
Subscript Grouping
$a_{i,j}$
$a_{i,j}$
Fraction
$1\over2$
$\frac{x}{y}=z$
$1\over2$

$\frac{x}{y}=z$

Fraction Grouping
${x+y}\over{2(x-y)}$
${x+y}\over{2(x-y)}$
Square Root
$\sqrt{2}$
$\sqrt{2}$
Log
$\exp_a b = a^b, \exp b = e^b, 10^m$
$\ln c, \lg d = \log e, \log_{10} f$

$\exp_a b = a^b, \exp b = e^b, 10^m$

$\ln c, \lg d = \log e, \log_{10} f$

Trig
$\sin a, \cos b, \tan c, \cot d, \sec e, \csc f$
$\arcsin h, \arccos i, \arctan j$

$\sin a, \cos b, \tan c, \cot d, \sec e, \csc f$

$\arcsin h, \arccos i, \arctan j$

Derivative
$\operatorname{d}y/\operatorname{d}x {\operatorname{d}y\over\operatorname{d}x} {\partial^2\over\partial x_1\partial x_2}y$
$\operatorname{d}y/\operatorname{d}x, {\operatorname{d}y\over\operatorname{d}x}, {\partial^2\over\partial x_1\partial x_2}y$
Integral
$\int\limits_{1}^{3} x \, dx$
$\int\limits_{1}^{3} x \, dx$
Double Integral
$\iint\limits_{1}^{3} x \, dx$
$\iint\limits_{1}^{3} x \, dx$

## Symbols

Description You type You get
Operators
$+, -, \pm, \mp, \dotplus$
$\times, \div, \divideontimes, /, \backslash$
$\cdot, * \ast, \star, \circ, \bullet$

$+, -, \pm, \mp, \dotplus$

$\times, \div, \divideontimes, /, \backslash$

$\cdot, * \ast, \star, \circ, \bullet$

Relations
$=, \ne \neq, \equiv, \not\equiv$
$\doteq, \overset{\underset{\mathrm{def}}{}}{=}, :=$
$\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$
$<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$
$>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$
$\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq$
$\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq$

$=, \ne \neq, \equiv, \not\equiv$

$\doteq, \overset{\underset{\mathrm{def}}{}}{=}, :=$

$\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$

$<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$

$>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$

$\le \leq, \lneq, \leqq, \nleqq, \lneqq, \lvertneqq$

$\ge \geq, \gneq, \geqq, \ngeqq, \gneqq, \gvertneqq$

Greek
$\alpha$

Where alpha can be replaced by:

alpha, beta, gamma, delta, epsilon, zeta, eta, theta, iota, kappa, lambda, mu, nu, xi, omicron, pi, rho, sigma, tau, upsilon, phi, chi, psi, omega, Gamma, Delta, Theta, Lambda, Xi, Pi, Sigma, Phi ,Psi, Omega
$\alpha , \beta , \gamma , \delta , \epsilon , \zeta , \eta , \theta , \iota , \kappa , \lambda , \mu , \nu , \xi , \omicron , \pi , \rho , \sigma , \tau , \upsilon , \phi , \chi , \psi , \omega , \Gamma , \Delta , \Theta , \Lambda , \Xi , \Pi , \Sigma , \Phi , \Psi , \Omega$
Arrows
$\Rightarrow$

Where "Rightarrow" can be replaced by:

• Rightarrow, nRightarrow, Leftarrow, nLeftarrow, Leftrightarrow, nLeftrightarrow, Uparrow, Downarrow, Updownarrow
• rightarrow \to, nrightarrow, longrightarrow, leftarrow \gets, nleftarrow, longleftarrow, leftrightarrow, nleftrightarrow, longleftrightarrow
• rightharpoonup, rightharpoondown, leftharpoonup, leftharpoondown, upharpoonleft, upharpoonright, downharpoonleft, downharpoonright, rightleftharpoons, leftrightharpoons

$\Rightarrow, \nRightarrow , \Leftarrow, \nLeftarrow , \Leftrightarrow, \nLeftrightarrow , \Uparrow, \Downarrow, \Updownarrow$

$\rightarrow \to, \nrightarrow, \longrightarrow , \leftarrow \gets, \nleftarrow, \longleftarrow , \leftrightarrow, \nleftrightarrow, \longleftrightarrow$

$\rightharpoonup , \rightharpoondown , \leftharpoonup , \leftharpoondown , \upharpoonleft , \upharpoonright \downharpoonleft , \downharpoonright , \rightleftharpoons , \leftrightharpoons$

## Examples

Reactions
$CH_4 + \frac{2}{\Phi} (O_2 + 3.76N_2) \Rightarrow CO_2 + 2H_2O + \frac{2}{\Phi} 3.76 N_2$

$CH_4 + \frac{2}{\Phi} (O_2 + 3.76N_2) \Rightarrow CO_2 + 2H_2O + \frac{2}{\Phi} 3.76 N_2$

Equations
$x^{\alpha} + x^{\beta} + x^{\gamma + 2 \zeta} + x =5$

$x^{\alpha} + x^{\beta} + x^{\gamma + 2 \zeta} + x =5$

Differential Equations
$u'' + p(x)u' + q(x)u=f(x),\quad x>a$

$u'' + p(x)u' + q(x)u=f(x),\quad x>a$

Color
${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$

${\color{Blue}x^2}+{\color{YellowOrange}2x}-{\color{OliveGreen}1}$