Type A: Magma-heated, Dry Steam Resource

Jump to: navigation, search
GEOTHERMAL ENERGYGeothermal Home
Print PDF


Type A: Magma-heated, Dry Steam Resource

Dictionary.png
Type A: Magma-heated, Dry Steam Resource:
No definition has been provided for this term.


Larderello's dry steam geothermal field was the first geothermal resource to be utilized for electricity generation in 1911 (reference: reuk.co.uk)
The dry steam geothermal area at The Geysers in Northern California is the largest producer of geothermal energy in the world (reference: pubs.usgs.gov)

Dry steam resources are the simplest and most ideal resources for geothermal development as they utilize pure steam as opposed to liquid. They are also some of the rarest geothermal resources found because of the specific geologic conditions they require to develop.

Famous dry steam resources include the first geothermal field ever exploited for electricity (Larderello, Italy in 1911) and the largest producing field of geothermal energy on Earth (The Geysers in Northern California). The only other currently exploited dry steam resources are the Darajat and Kamojang fields in Indonesia, the Travale field in Italy, and the Matsukawa field in Japan.

According to Brophy, dry steam resources typically have the following properties:

  • Topography – Rugged to mountainous
  • Climate – Variable
  • Depth to resource – Usually deep (2500-4000m)
  • Surface manifestations - Restricted
  • Permeability – Low to moderate fracture permeability







Examples

Want to add an example to this list? Select a Geothermal Resource Area to edit its "Brophy Model" property using the "Edit with Form" button.

CSV
Geothermal
Resource
Area
Geothermal
Region
Control
Structure
Host
Rock
Age
Host
Rock
Lithology
Mean
Capacity
Mean
Reservoir
Temp
Chena Geothermal Area Alaska Geothermal Region Fault Intersection
Intrusion Margins and Associated Fractures
90 Ma Granitic Pluton 0.4 MW400 kW
400,000 W
400,000,000 mW
4.0e-4 GW
4.0e-7 TW
371.15 K98 °C
208.4 °F
668.07 °R
Cove Fort Geothermal Area Northern Basin and Range Geothermal Region 25 MW25,000 kW
25,000,000 W
25,000,000,000 mW
0.025 GW
2.5e-5 TW
475.15 K202 °C
395.6 °F
855.27 °R
Geysers Geothermal Area Holocene Magmatic Pull-Apart in Strike-Slip Fault Zone Mesozoic metamorphosed sandstone 1,585 MW1,585,000 kW
1,585,000,000 W
1,585,000,000,000 mW
1.585 GW
0.00159 TW
551.15 K278 °C
532.4 °F
992.07 °R
Mokai Geothermal Area Taupo Volcanic Zone Fault Intersection Quaternary Volcaniclastic 112 MW112,000 kW
112,000,000 W
112,000,000,000 mW
0.112 GW
1.12e-4 TW
568.15 K295 °C
563 °F
1,022.67 °R
Ngatamariki Geothermal Area New Zealand Geothermal Region 82 MW82,000 kW
82,000,000 W
82,000,000,000 mW
0.082 GW
8.2e-5 TW
553.15 K280 °C
536 °F
995.67 °R
Ngawha Geothermal Area New Zealand Geothermal Region Greywackes 25 MW25,000 kW
25,000,000 W
25,000,000,000 mW
0.025 GW
2.5e-5 TW
503.15 K230 °C
446 °F
905.67 °R
Rotokawa Geothermal Area Taupo Volcanic Zone Fault Intersection Quaternary Volcaniclastic 167 MW167,000 kW
167,000,000 W
167,000,000,000 mW
0.167 GW
1.67e-4 TW
573.15 K300 °C
572 °F
1,031.67 °R
Soultz Geothermal Area Upper Rhine Valley 1.5 MW1,500 kW
1,500,000 W
1,500,000,000 mW
0.0015 GW
1.5e-6 TW
441.15 K168 °C
334.4 °F
794.07 °R
Travale-Radicondoli Geothermal Area Italy Geothermal Region Triassic Dolostone; Metamorphic basement 200 MW200,000 kW
200,000,000 W
200,000,000,000 mW
0.2 GW
2.0e-4 TW
543.15 K270 °C
518 °F
977.67 °R

References

  1. Colin F. Williams, Marshall J. Reed and Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources - Presentation. In: Thirty-Sixth Workshop on Geothermal Reservoir Engineering; 2011/02/02; Stanford, California. Stanford, California: Stanford University; p. 23