Type A: Magma-heated, Dry Steam Resource

From Open Energy Information


Dictionary.png
Type A: Magma-heated, Dry Steam Resource:
No definition has been provided for this term.


Larderello's dry steam geothermal field was the first geothermal resource to be utilized for electricity generation in 1911 (reference: reuk.co.uk)
The dry steam geothermal area at The Geysers in Northern California is the largest producer of geothermal energy in the world (reference: pubs.usgs.gov)

Dry steam resources are the simplest and most ideal resources for geothermal development as they utilize pure steam as opposed to liquid. They are also some of the rarest geothermal resources found because of the specific geologic conditions they require to develop.

Famous dry steam resources include the first geothermal field ever exploited for electricity (Larderello, Italy in 1911) and the largest producing field of geothermal energy on Earth (The Geysers in Northern California). The only other currently exploited dry steam resources are the Darajat and Kamojang fields in Indonesia, the Travale field in Italy, and the Matsukawa field in Japan.

According to Brophy, dry steam resources typically have the following properties:

  • Topography – Rugged to mountainous
  • Climate – Variable
  • Depth to resource – Usually deep (2500-4000m)
  • Surface manifestations - Restricted
  • Permeability – Low to moderate fracture permeability







Examples

Want to add an example to this list? Select a Geothermal Resource Area to edit its "Brophy Model" property using the "Edit with Form" option.

CSV
Geothermal
Resource
Area
Geothermal
Region
Control
Structure
Host
Rock
Age
Host
Rock
Lithology
Mean
Capacity
Mean
Reservoir
Temp
Chena Geothermal AreaAlaska Geothermal RegionFault Intersection
Intrusion Margins and Associated Fractures
90 MaGranitic Pluton0.4 MW
400 kW
400,000 W
400,000,000 mW
4.0e-4 GW
4.0e-7 TW
371.15 K
98 °C
208.4 °F
668.07 °R
Cove Fort Geothermal AreaNorthern Basin and Range Geothermal Region25 MW
25,000 kW
25,000,000 W
25,000,000,000 mW
0.025 GW
2.5e-5 TW
475.15 K
202 °C
395.6 °F
855.27 °R
Geysers Geothermal AreaHolocene MagmaticPull-Apart in Strike-Slip Fault ZoneMesozoicmetamorphosed sandstone1,585 MW
1,585,000 kW
1,585,000,000 W
1,585,000,000,000 mW
1.585 GW
0.00159 TW
551.15 K
278 °C
532.4 °F
992.07 °R
Mokai Geothermal AreaTaupo Volcanic ZoneFault IntersectionQuaternaryVolcaniclastic112 MW
112,000 kW
112,000,000 W
112,000,000,000 mW
0.112 GW
1.12e-4 TW
568.15 K
295 °C
563 °F
1,022.67 °R
Ngatamariki Geothermal AreaNew Zealand Geothermal Region82 MW
82,000 kW
82,000,000 W
82,000,000,000 mW
0.082 GW
8.2e-5 TW
553.15 K
280 °C
536 °F
995.67 °R
Ngawha Geothermal AreaNew Zealand Geothermal RegionGreywackes25 MW
25,000 kW
25,000,000 W
25,000,000,000 mW
0.025 GW
2.5e-5 TW
503.15 K
230 °C
446 °F
905.67 °R
Rotokawa Geothermal AreaTaupo Volcanic ZoneFault IntersectionQuaternaryVolcaniclastic167 MW
167,000 kW
167,000,000 W
167,000,000,000 mW
0.167 GW
1.67e-4 TW
573.15 K
300 °C
572 °F
1,031.67 °R
Soultz Geothermal AreaUpper Rhine Valley1.5 MW
1,500 kW
1,500,000 W
1,500,000,000 mW
0.0015 GW
1.5e-6 TW
441.15 K
168 °C
334.4 °F
794.07 °R
Travale-Radicondoli Geothermal AreaItaly Geothermal RegionTriassicDolostone; Metamorphic basement200 MW
200,000 kW
200,000,000 W
200,000,000,000 mW
0.2 GW
2.0e-4 TW
543.15 K
270 °C
518 °F
977.67 °R

References

  1. Colin F. Williams, Marshall J. Reed and Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources - Presentation. In: Thirty-Sixth Workshop on Geothermal Reservoir Engineering; 2011/02/02; Stanford, California. Stanford, California: Stanford University; p. 23