Syn- And Posteruptive Hazards Of Maar-Diatreme Volcanoes

Jump to: navigation, search

OpenEI Reference LibraryAdd to library

Journal Article: Syn- And Posteruptive Hazards Of Maar-Diatreme Volcanoes

Maar-diatreme volcanoes represent the second most common volcano type on continents and islands. This study presents a first review of syn- and posteruptive volcanic and related hazards and intends to stimulate future research in this field. Maar-diatreme volcanoes are phreatomagmatic monogenetic volcanoes. They may erupt explosively for days to 15 years. Above the preeruptive surface a relatively flat tephra ring forms. Below the preeruptive surface the maar crater is incised because of formation and downward penetration of a cone-shaped diatreme and its root zone. During activity both the maar-crater and the diatreme grow in depth and diameter. Inside the diatreme, which may penetrate downwards for up to 2.5 km, fragmented country rocks and juvenile pyroclasts accumulate in primary pyroclastic deposits but to a large extent also as reworked deposits. Ejection of large volumes of country rocks results in a mass deficiency in the root zone of the diatreme and causes the diatreme fill to subside, thus the diatreme represents a kind of growing sinkhole. Due to the subsidence of the diatreme underneath, the maar-crater is a subsidence crater and also grows in depth and diameter with ongoing activity. As long as phreatomagmatic eruptions continue the tephra ring grows in thickness and outer slope angle. Syneruptive hazards of maar-diatreme volcanoes are earthquakes, eruption clouds, tephra fall, base surges, ballistic blocks and bombs, lahars, volcanic gases, cutting of the growing maar crater into the preeruptive ground, formation of a tephra ring, fragmentation of country rocks, thus destruction of area and ground, changes in groundwater table, and potential renewal of eruptions. The main hazards mostly affect an area 3 to possibly 5 km in radius. Distal effects are comparable to those of small eruption clouds from polygenetic volcanoes. Syneruptive effects on infrastructure, people, animals, vegetation, agricultural land, and drainage are pointed out. Posteruptive hazards concern erosion and formation of lahars. Inside the crater a lake usually forms and diverse types of sediments accumulate in the crater. Volcanic gases may be released in the crater. Compaction and other diagenetic processes within the diatreme fill result in its subsidence. This posteruptive subsidence of the diatreme fill and thus crater floor is relatively large initially but will decrease with time. It may last millions of years. Various studies and monitoring are suggested for syn- and posteruptive activities of maar-diatreme volcanoes erupting in the future. The recently formed maar-diatreme volcanoes should be investigated repeatedly to understand more about their syneruptive behaviour and hazards and also their posteruptive topographic, limnic, and biologic evolution, and potential posteruptive hazards. For future maar-diatreme eruptions a hazard map with four principal hazard zones is suggested with the two innermost ones having a joint radius of up to 5 km. Areas that are potentially endangered by maar-diatreme eruptions in the future are pointed out.

Volker Lorenz

Published Journal 
Journal of Volcanology and Geothermal Research, 2007

Not Provided
Check for DOI availability:



Volker Lorenz. 2007. Syn- And Posteruptive Hazards Of Maar-Diatreme Volcanoes. Journal of Volcanology and Geothermal Research. (!) .