Physical model of a fractured reservoir

From Open Energy Information

OpenEI Reference LibraryAdd to library

Conference Proceedings: Physical model of a fractured reservoir

The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of injection-backflow tests, similar to those performed at the Raft River Geothermal field, was conducted. These included variable volume injection and injection-backflow tests with varying quiescent periods between injection and backflow. This latter series of tests was conducted with a range of flow fields passing through the model. Tracer recovery is related to the flow field in the physical model and model parameters. Longer quiescent times and greater flow fields result in a lower tracer recovery. A plot of the fractional tracer recovery against quiescent time results in a straight line. This relationship, combined with classical reservoir engineering data, can be used to predict aquifer flow rate and porosity from known injection volumes and tracer recovery.

Hull, L. C.; Koslow and K. N.  

PROCEEDINGS, Ninth workshop on geothermal reservoir engineering, Stanford, CA, USA, 13 Dec 1983, 1/1/1983

Not Provided
Check for DOI availability:


Hull, L. C.; Koslow, K. N.  . 1/1/1983. Physical model of a fractured reservoir. Proceedings of (!) ; (!) : PROCEEDINGS, Ninth workshop on geothermal reservoir engineering, Stanford, CA, USA, 13 Dec 1983.

Related Geothermal Exploration Activities
Activities (1)

Areas (1)
  1. Raft River Geothermal Area
Regions (0)