Geophysical Evidence On The Structure Of The Taupo Volcanic Zone And Its Hydrothermal Circulation

Jump to: navigation, search


OpenEI Reference LibraryAdd to library

Journal Article: Geophysical Evidence On The Structure Of The Taupo Volcanic Zone And Its Hydrothermal Circulation

Abstract
The Taupo Volcanic Zone (TVZ) of New Zealand is characterised by extensive volcanism and by high rates of magma production. Associated with this volcanism are numerous high-temperature (> 250°C) geothermal systems through which the natural heat output of 4200 ± 500 MW is channelled. Outside the geothermal fields the heat flow is negligible. The average heat flux from the central 6000 km2 of the TVZ, which contains most of the geothermal fields, is 700 mW/m3. This heat flux appears to be more concentrated along the eastern margin of the TVZ. Schlumberger resistivity measurements (AB/2 of 500 m and 1000 m) have identified 17 distinct geothermal fields with natural heat outputs greater than 20 MW. An additional six, low-heat-output geothermal fields also occur, and may represent formerly more active systems now in decline. Two extinct fields have also been identified. The average spacing between fields is 10-15 km. The distribution of geothermal fields does not appear to be directly associated with individual volcanic features except for the geothermal system that occurs within Lake Taupo and which occupies the vent of the 1800 yr.B.P. Taupo eruption. The positions of the geothermal fields do not appear to have varied for at least the last 200,000 years. These data are consistent with a model of large-scale convection occurring throughout the TVZ, in which the geothermal fields represent the upper portion of the rising, high-temperature, convective plumes. The majority of the recharge to the convection system is provided by the downward movement of cold meteoric water between the fields which suppresses the heat flow in these regions. Gravity measurements indicate that to a depth of about 2.5 km the upper layers of the TVZ consist of low-density pyroclastic infill. A seismic refraction interface with velocity change from 3.2 km/s to 5.5 km/s occurs at a similar depth. The cross-sectional area of the convection plumes (identified electrically) appears to increase at depths of 1-2 km, consistent with a decrease in permeability at the depth at which the velocity and density increase. The seismicity is dominated by swarm activity which accounts for about half of all earthquakes and is highly variable in both space and time. The small number of seismic events (and swarms) that have well determined depths show a cut off of seismicity at depths of 7-9 km. The depth of the transition from brittle to ductile behaviour of the rocks is identified with the transition from a regime where heat is transported by (hydrothermal) convection and pore pressures are near-hydrostatic to a regime where heat transport is dominantly conductive and pore pressures are lithostatic. Within the convective region, temperatures are moderated by the circulation of water so that the depth of the transition from convective to conductive heat transfer can be linked to the bottom of the seismogenic zone. Rocks must become ductile within about 1 km of the bottom of the overlying convective zone. Seismic refraction studies suggest that the crust beneath the TVZ is highly thinned with a seismic velocity of about 7.5 km/ s, typical of the upper mantle, occurring at depth of 15 km. Seismological studies indicate the upper mantle is highly attenuating beneath the TVZ. Conductive heat transfer between the bottom of the convective system, at about 8 km, and the base of the material with crustal velocities, at 15 km, is not able to provide all the heat that is discharged at the surface. Repeated intrusion from the mantle may provide the additional heat transport required.

Authors 
H. M. Bibby, T. G. Caldwell, F. J. Davey and T. H. Webb








Published Journal 
Journal of Volcanology and Geothermal Research, 1995





DOI 
Not Provided
Check for DOI availability: http://crossref.org



 

Citation

H. M. Bibby,T. G. Caldwell,F. J. Davey,T. H. Webb. 1995. Geophysical Evidence On The Structure Of The Taupo Volcanic Zone And Its Hydrothermal Circulation. Journal of Volcanology and Geothermal Research. (!) .