Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico

Jump to: navigation, search


OpenEI Reference LibraryAdd to library

Journal Article: Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico

Abstract
Continental Scientific Drilling Program (CSDP) drill hole VC-2B (total depth 1761.7 m (5780 ft); maximum temperature 295°C) was continuously cored through the Sulphur Springs hydrothermal system in the western ring-fracture zone of the 1.14 Ma Valles caldera. Among other units, the hole penetrated 760.2 m (2494.1 ft) of Paleozoic carbonate and siliciclastic strata underlying caldera fill and precaldera volcanic and epiclastic rocks. Comparison of the VC-2B Paleozoic rocks with corresponding lithologies within and around the 32.1 Ma Socorro caldera, 192 km ( 119 miles) to the south-southwest, provides insight into the variability of alteration responses to similar caldera-related hydrothermal regimes. The Pennsylvanian Madera Limestone and Sandia Formation from VC-2B preserve many of the sedimentological and diagenetic features observed in these units on a regional basis and where unaffected by high temperatures or hydrothermal activity. Micrites in these formations in VC-2B are generally altered and mineralized only where fractured or brecciated, that is, where hydrothermal solutions could invade carbonate rocks which were otherwise essentially impermeable. Alteration intensity (and correspondingly inferred paleopermeability) is only slightly higher in carbonate packstones and grainstones, low to intermediate in siltstones and claystones, and high in poorly cemented sandstones. Hydrothermal fracture-filling phases in these rocks comprise sericite (and phengite), chlorite, allanite, apatite, an unidentified zeolite and sphene in various combinations, locally with sphalerite, galena, pyrite and chalcopyrite. Terrigenous feldspars and clays are commonly altered to chlorite and seriate, and euhedral anhydrite 'porphyroblasts' with minor chlorite occur in Sandia Formation siltstone. Fossils are typically unaltered, but the walls of some colonial bryozoans in the Madera Limestone are altered to the assemblage chlorite-sericite-epidote-allanite. La, Ce and Nd are present in an unidentified hydrothermal mineral occurring throughout much of the VC-2B Pennsylvanian sequence. Carboniferous carbonate and siliciclastic formations within and around the Socorro caldera show a similar style of alteration and mineralization to their Valles caldera counterparts, but by contrast locally host commercial, caldera-related, base-metal sulfide deposits. As in the Valles rocks, mineralization and alteration in those of the Socorro caldera were strongly controlled by porosity. Unless disrupted by fractures, breccias, or karst cavities ( not identified in Valles caldera drill holes), the rocks remained relatively unaltered. Where these features allowed ingress of mineralizing hydrothermal solutions, base-metal sulfides and rare-earth-element-bearing minerals were precipitated.

Authors 
Augustus K. Armstrong, Jacques R. Renault and Robert L. Oscarson








Published Journal 
Journal of volcanology and geothermal research, 1995





DOI 
Not Provided
Check for DOI availability: http://crossref.org


Online 
Internet link for Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico

Citation

Augustus K. Armstrong,Jacques R. Renault,Robert L. Oscarson. 1995. Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico. Journal of volcanology and geothermal research. 67(1):207-220.